The Representation-theoretic Rank of the Doubles of Quasi-quantum Groups

نویسنده

  • DANIEL BULACU
چکیده

We compute the representation-theoretic rank of a finite dimensional quasi-Hopf algebra H and of its quantum double D(H), within the rigid braided category of finite dimensional left D(H)-modules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...

متن کامل

From Projective Representations to Quasi-quantum Groups

This is a contribution to the project of quiver approaches to quasi-quantum groups initiated in [13]. We classify Majid bimodules over groups with 3-cocycles by virtue of projective representations. This leads to a theoretic classification of graded pointed Majid algebras over path coalgebras, or equivalently cofree pointed coalgebras, and helps to provide a projective representation-theoretic ...

متن کامل

Some bounds on unitary duals of classical groups‎ - ‎non-archimeden case

‎We first give bounds for domains where the unitarizabile subquotients can show up in the parabolically induced representations of classical $p$-adic groups‎. ‎Roughly‎, ‎they can show up only if the‎ ‎central character of the inducing irreducible cuspidal representation is dominated by the‎ ‎square root of the modular character of the minimal parabolic subgroup‎. ‎For unitarizable subquotients...

متن کامل

GENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE

The rank-k numerical range has a close connection to the construction of quantum error correction code for a noisy quantum channel. For noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the associated joint rank-k numerical range is non-empty. In this paper the notion of joint rank-k numerical range is generalized and some statements of [2011, Generaliz...

متن کامل

Generalized quantum current algebras

Two general families of new quantum deformed current algebras are proposed and identified both as infinite Hopf family of algebras, a structure which enable one to define “tensor products” of these algebras. The standard quantum affine algebras turn out to be a very special case of both algebra families, in which case the infinite Hopf family structure degenerates into standard Hopf algebras. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006